
Golden Images for 
Scaling Up with the 
Best of Them
Neal Gompa



Who am I?
• Professional technologist

• Linux user for nearly fifteen years

• Contributor and developer in Fedora, 

CentOS, openSUSE, Mageia, and 

OpenMandriva Linux distributions

• Contributor to RPM, DNF, KIWI, and 

various related projects

• Senior DevOps Engineer at Datto, Inc.



The beginning of the Datto Cloud



Pre-automation era

In the beginning of the Datto Cloud, there was 
not much in the way of automation for 
provisioning systems. Each physical server was 
built and the operating system was installed by 
hand by going through the installation process 
manually.

This worked when we had few physical servers 
(and few employees doing the work), but quickly 
became a problem as we grew.



Minimal automation era

Eventually, we grew to a point where each 
system being subtly different due to the manual 
installation of the operating system and server 
software became a problem.

We introduced installation automation 
(kickstart/kickseed/pre-seed) to regularize the 
system software installation process.

Virtual machines on physical hosts were 
provisioned similarly.



The Foreman era



Bringing in the Foreman
The need to further standardize and automate system 

deployments necessitated introducing configuration 

management and lifecycle management system.

Thus, the Foreman with Puppet was introduced to 

automate the configuration and maintain the standard 

configuration as it changed centrally.



Puppet-master era

As we introduced Foreman, we started using it 
as part of provisioning virtual machines.

At first, we kept the same installation process 
and then auto-connected the VM to Foreman to 
run Puppet. Once we started running an 
OpenStack system, we started using official 
golden images and then running Puppet on 
there to speed things up considerably.



Puppet-master era

Eventually, our Puppet became so complex that 
Puppet runs were taking upwards to an hour for 
initial runs on images.

We started splitting up our Puppet manifests 
and leveraging Packer to pre-bake “common” 
configuration, while still running 
application-specific stuff at provision-time.

Unfortunately, this did not scale well as more 
products and teams needed to work with it 
using other tools in a self-service manner.



Into the era of self-service



What started going wrong…

The workflow we were using to build our images 
worked great… up to a point. The images were 
largely controlled by the infrastructure team and 
the content and nature of the images made it 
difficult for software engineers to influence them 
for their needs.

Furthermore, a gradual shift away from Puppet 
started, in line with a shirt toward software 
engineering teams owning more of the 
operational nature of their products and services.



The new requirements…

Integrating new products and teams meant we 
needed to rethink how our cloud images were 
made for them to use. This was distilled into the 
following new requirements:
• Multi-distro (CentOS and Ubuntu)
• Agnostic and independent of configuration 

management tools
• Unified system tooling and interfaces across 

distributions (as much as possible)
• Corporate standard tools integrated into the 

baseline for consumers



Rethinking the image build
… with some kiwi?



Searching for a new image build tool

As it turns out, when you need unified tooling that 
supports multiple distribution families, the list of 
viable options are quite short.

Even without that, a lot of build tools are 
purpose-built, or made and then get no 
maintenance. Worse yet, most of these tools 
have little to no community development around 
them.



Selecting KIWI

After a fair bit of searching, it came down to two 
options:
• mkosi
• KIWI

We selected KIWI primarily because of its 
maturity and stronger community. In particular, 
the input manifest format and SBOM logs it 
creates as part of the image build made it much 
more attractive.

https://github.com/systemd/mkosi
https://osinside.github.io/kiwi/


Selecting KIWI

• Straightforward and idiomatic
• XML/YAML/JSON descriptions with script hooks

• Flexible
• Builds almost any type of image
• Provides an API to construct custom image types

• Automatically produced SBOM artifact logs
• Free and Open Source Software (GPLv3+)
• Actively developed and maintained
• Friendly developers



Beginning our use of KIWI



Improving KIWI

Once we settled on KIWI, we started trying to 
adapt some of our image builds to use it and 
came across a few issues we needed to resolve 
to make it fully ready for our use.

So, we rolled up our sleeves and contributed 
improvements!



Improving KIWI



Improving KIWI



Improving KIWI



Improving KIWI



Improving KIWI



Demonstration



Our production pipeline



References

• KIWI website and docs: 
http://osinside.github.io/kiwi/

• KIWI GitHub project: 
https://github.com/OSInside/kiwi

• Sample descriptions: 
https://github.com/OSInside/kiwi-descriptions

• Demo descriptions: 
https://github.com/datto/devconfus22-demo-gol
den-image-descriptions

http://osinside.github.io/kiwi/
https://github.com/OSInside/kiwi
https://github.com/OSInside/kiwi-descriptions
https://github.com/datto/devconfus22-demo-golden-image-descriptions
https://github.com/datto/devconfus22-demo-golden-image-descriptions


27

The world’s leading provider of 
MSP-delivered IT solutions
The world’s leading provider of 
MSP-delivered IT solutions

Blog - datto.engineering 
 Careers - datto.com/careers 

GitHub - github.com/datto
GitLab - gitlab.com/datto 

https://datto.engineering/
https://datto.com/careers
https://github.com/datto
https://gitlab.com/datto

