
1

Adapting to AppStreams
Delivering the Datto Linux Agent for RHEL 8

Neal Gompa

Who am I?
• Professional technologist

• Linux user for nearly fifteen years

• Contributor and developer in Fedora,

Mageia, openSUSE, and OpenMandriva

Linux distributions

• Contributor to RPM, DNF, and various

related projects

• DevOps Engineer at Datto, Inc.

3

All About Datto

Founded in 2007
23 offices around

the world
1,800+ employees

worldwide & growing

17,000+ managed
service provider partners

100% channel only

44

Datto products empower our community of Managed Service Provider partners with the right technology, business
tools, and support to enable each and every one of their customers to succeed. It’s an approach that has made us
the world’s leading innovator of MSP-delivered IT solutions.

Growth Products Efficiency Products

Professional Services
Automation (PSA)
SaaS platform for MSPs to
manage their entire business

Remote Monitoring
& Management
(RMM)
Cloud-based Software for
MSPs to manage SMB
endpoints

File Sync & Share
Fully managed File
Sync & Share solution
• Datto Workplace

Networking
Fully cloud managed
networking solutions designed
for MSPs

• Datto Networking WiFi
• Datto Networking Switches
• Datto Networking Edge

Routers
• Datto Managed Power

Unified Continuity
Reliable data protection for full IT
environment maximizing up time

• SIRIS
• ALTO
• Datto Cloud Continuity for PCs
• Datto File Protection
• NAS
• SaaS Application Protection

• Office 365
• Google Suite

What We Offer

5

Datto Linux Agent?

66

Datto Linux (Backup) Agent

● Part of our Business Continuity/Disaster recovery (BCDR)
solution

● Enables seamless backups of x86_64 Linux systems
● Components:

○ dattobd: open source kernel module
○ dlad: proprietary userspace daemon

https://github.com/datto/dattobd

77

Datto Linux (Backup) Agent

● More than 300 releases of the kernel and user-space
components in the past five years
○ A little under a third of those have been releases to customers

● Over 50 Linux distribution releases have been supported
across all versions of DLA for a range of Linux distributions
○ We support slightly under half that with the latest DLA versions

8

How we build the Datto Linux Agent

99

Open Build Service

The Open Build Service (OBS) is a software solution created by SUSE
to build and manage the openSUSE and SUSE Linux Enterprise
distributions. It’s similar to Koji, the RHEL/Fedora build system.
However, it was designed from the beginning to support a wide variety
of Linux based platforms. Notably, it can build packages, repositories,
and images for Red Hat/Fedora, SUSE, and Debian/Ubuntu systems.
SUSE offers a hosted version as the openSUSE Build Service, and the
appliance image is freely available for you to set up your own.

https://openbuildservice.org/
http://koji.build/

1010

Why we use the Open Build Service?

● Source input flexibility through “source services” that allow scripted
retrieval and processing of sources

● Easy scaling of resources through OBS workers that detect the master
and auto-connect

● Automatic reverse dependency rebuilding on package updates to ensure
dependencies are linked correctly

● Easy to deploy and get started with using the official appliance provided
on the website

● Lets us build packages natively for RPM and Debian distributions using
RPM spec files (using debbuild for Debian/Ubuntu)

https://github.com/debbuild/debbuild

11

And everything Just Worked…?

1212

OBS and AppStreams

● Application Streams was introduced to Red Hat Enterprise
Linux with the RHEL 8 beta in November 2018

● Unfortunately, the incomplete state of the public beta made it
difficult to do any development

● Everything was pushed back to after RHEL 8 release
● No guidance on how to build AppStreams either…
● Thus, OBS had no support for this when RHEL 8 released

Go to the source!
Applications Streams is the implementation

of the upstream Fedora Modularity project in

Red Hat Enterprise Linux

1414

Module builds in Fedora, both locally and remotely, depend on a
service called the Module Build Service, which processes the
modulemd YAML files to generate a build environment.
In order to do this, it needs to talk to a Koji server to figure out
what is available and create the set of packages that should exist
in the build environment (In Koji terms: a build root).
This implies that we should be running a Koji instance to build
packages depending on modules. It also implies that we have
access to the Koji instance building the target distribution.

Fedora Modularity guidance…?

15

We have OBS, not Koji...
So now what?

Three potential options
• Mirror the distribution and

de-modularize the repositories

• Deploy Koji and MBS and modify it to

work purely off repositories

• Enhance OBS to handle modular

content

17

Pros
• Makes building packages with any tooling

possible
• Reduces the amount of effort to adapt

tooling to support AppStreams in
distributions

Cons
• Huge outlay of storage required (hundreds

of gigabytes over time)
• Process has to be repeated every time

content is mirrored, making it slow and
expensive to update distribution content

• Loss of modular dependency semantics,
making it possible to accidentally create
invalid dependency chains at runtime

Mirror distribution and de-modularize

18

Pros
• Leverages the same build pipeline

technologies that Red Hat and Fedora use
• Well-understood technology path for

building packages
• Easy to build our own AppStreams with

Cons
• Forces maintenance of duplicate

infrastructure
• Would require synchronizing between Koji

and OBS to have a complete store of
package content

• Unequal capabilities between the two
systems may cause more trouble than it is
worth

Deploy Koji and MBS

19

Pros
• Leverages our existing tooling and pipelines
• Does not require supporting duplicate

infrastructure

Cons
• Producing AppStreams sanely would not be

straightforward to implement
• Build system resolver needs to be taught

concepts regarding AppStreams

Enhance OBS to support AppStreams

What did we do?
• Initially pursued de-modularization strategy using

GrobiSplitter from Fedora Modularity, as running a

second build system for just one Linux distribution was

not appealing

• I met with the OBS team at the openSUSE Conference

along with members of the DNF/YUM team to hash out a

strategy to support AppStreams in OBS

• The upstream OBS project implemented some of this

over the course of last year, which led us to refocus on

porting that to the stable OBS release

https://github.com/fedora-modularity/GrobiSplitter
https://github.com/openSUSE/open-build-service/pull/8820

21

After upgrading to OBS 2.10.1 (which included
the backported feature), we just needed to add
a snippet to our project configuration to enable
the virt module with the rhel stream. This is
shown on the right.

This enabled the AppStream in our build
environment and allowed everything to work,
mostly...

We’re done now, right?
Snippet from OBS project configuration:

%if "%{_repository}" == "CentOS_8"

for libiscsi-devel for libagent

ExpandFlags: module:virt-rhel

%endif

One last thing...
As it turned out, there was one remaining problem: a

missing development header package. Specifically,

dlad uses libudisks2, and we needed

libudisks2-devel to link to it.

This was easily rectified: we filed a case with Red Hat

in January and had it added to the CodeReady Builder

repository for RHEL 8.3. But in order to get things out

the door now, we needed it faster...

CentOS Stream was the answer here, and we had it

added there so that our build system could consume it

now and be ready faster.

2323

And now we’ve done it!

Special Thanks
• Stephen Gallagher from Fedora Modularity Team

• Daniel Mach and Jaroslav Mracek from DNF

Team

• Adrian Schröter and Michael Schröder from Open

Build Service Team

Resources
• GrobiSplitter:

https://github.com/fedora-modularity/GrobiSplitter

• Module Building in a Box (Koji + MBS):

https://github.com/fedora-infra/mbbox

• Fedora Modularity:

https://docs.pagure.org/modularity/

• Koji: http://koji.build/

• Open Build Service: https://openbuildservice.org/

https://github.com/fedora-modularity/GrobiSplitter
https://github.com/fedora-infra/mbbox
https://docs.pagure.org/modularity/
http://koji.build/
https://openbuildservice.org/

Questions?

ngompa@datto.com

27

The world’s leading provider of
MSP-delivered IT solutions
The world’s leading provider of
MSP-delivered IT solutions

